### MiBraScan - Microwave Brain Scanner for Cerebrovascular Diseases Monitoring

KO CNR-IREA, 01/02/2017

#### MiBraScan main expected result

Develop and build the prototype of a microwave imaging (MWI) device able to track the evolution in time of a stroke, as well as to image the features of the tissues it has affected.

- non-invasive and safe, thanks to the use of low-power, non ionizing radiations;
- provides real-time images of the stroke evolution, thanks to tailored processing algorithms and their hardware implementation;
- portable at the patient bed, thanks to the use of ad-hoc developed front-end electronics;
- is cost-efficient, thanks to low-cost of the involved technologies.

Brief introduction on recent results effort by POLITO (1)

The team:

- Francesca Vipiana, Jorge Tobon and Gianluca Dassano, Antenna and EMC Lab (LACE, http://areeweb.polito.it/lace/)
- Mario Casu, Giovanna Turvani and Marco Vacca, VLSI Lab (http://www.det.polito.it/it/the\_department/internal\_structures/research\_labs/vlsi\_la boratory)

### Brief introduction on recent results effort by POLITO (2)



### Brief introduction on recent results effort by POLITO (3)

#### ✓ Design, prototyping and testing of custom printed antennas



Fig. 3. (a) Antenna and (b)  $S_{11}$  measured in 80-20% glycerin-water mixture (solid line) and in Triton x-100 (dashed line).

### Brief introduction on recent results effort by POLITO (4)

✓ Design, prototyping and testing of ad-hoc radiofrequency (RF) front-end systems



Fig. 1. Architecture of our prototype system for breast-cancer detection using Microwave Imaging.



Fig. 7. Low-cost, small-size components off-the-shelf used in our system.

### Brief introduction on recent results effort by POLITO (5)

 Custom programming of an embedded Field-Programmable Gate Array (FPGA) for accelerating the execution of the imaging algorithm.



Fig. 8. computing architecture on a Xilinx Zynq SoC.

### Expertise

**EM** modelling in complex environments

**Approaches for imaging problems** 

Tools and methodologies to design optimal MWI systems

# A simple tool to fix working conditions Transmission Coefficient



Working frequency <1.5GHz **Embedding medium [10-50]** 7-15mm spatial resolution 1GHz 2GHz IEyl

01

IEyl

A methodology for optimal MWI system design



A methodology for optimal MWI system design





A methodology for optimal MWI system design





A methodology for optimal MWI system design

Reducing the number of probes (image of a point-like target)



High precision system

Low precision system

#### the team

Lorenzo Crocco Rosa Scapaticci Gennaro G. Bellizzi

Associated researchers for MIBRASCAN Enrico Tedeschi Gennaro Bellizzi Brief introduction/update on recent results effort by CNRS

### Recalling the first steps of the projects (from the gantt chart)

05/02/2017 05/05/2017

|           |                                                           |    |   |        |            |    |        |    |    | _      |    |    |       |   |
|-----------|-----------------------------------------------------------|----|---|--------|------------|----|--------|----|----|--------|----|----|-------|---|
| MiBraScan |                                                           |    | 1 | Year 1 |            |    | Year 2 |    |    | Year 3 |    |    |       |   |
| Microw    | ave Brain Scanner for Cerebrovascular Diseases Monitoring | Q1 | C | 12 0   | <b>J</b> 3 | Q4 | Q1     | Q2 | Q3 | Q4     | Q1 | Q2 | Q3 Q4 | ŧ |
| WP0       | Project management                                        |    | Γ |        |            |    |        |    |    |        |    |    |       |   |
| WP 1      | State of the art and system requirements                  |    | Г |        |            |    |        |    |    |        |    |    |       | 1 |
| Task 1.1  | State of the art update                                   |    |   |        |            |    |        |    |    |        | L  |    |       |   |
| Task 1.2  | System requirement refinement                             |    | L |        |            |    |        |    |    |        | L  |    |       |   |
| WP 2      | Electromagnetic modeling and imaging                      |    | I |        |            |    |        |    |    |        |    |    |       |   |
| Task 2.1  | EM 3D full-wave modeling tool                             |    |   |        |            |    |        |    | _  |        | 1  |    |       |   |
| Task 2.2  | MWI algorithms for post-acute monitoring                  |    | Γ |        |            |    |        |    | Ι  |        | L  |    |       |   |
| Task 2.3  | Antenna layout optimization                               |    |   |        |            |    |        |    | -  |        |    |    |       |   |
| Task 2.4  | MWI algorithms for quantitative tissue mapping            |    |   |        |            |    |        |    |    |        |    |    |       |   |
| Task 2.5  | Full-fledged system level simulations                     |    |   |        |            |    |        |    |    |        |    |    |       |   |
| WP 3      | Head phantoms generation                                  |    |   |        |            |    |        |    |    |        |    |    |       |   |
| Task 3.1  | Selection of test cases and segmentation                  |    | Γ |        |            |    |        |    |    |        | 1  |    |       |   |
| Task 3.2  | Numerical phantoms generation                             |    |   |        |            |    |        |    |    |        |    |    |       |   |
| Task 3.3  | Physical phantoms design and building                     |    | _ |        |            |    |        |    |    |        |    |    |       |   |
| WP 4      | MWI system prototyping                                    |    |   |        |            |    |        |    |    |        |    |    |       |   |
| Task 4.1  | RF front-end back-end design and prototyping              |    | Γ |        |            |    |        |    | _  |        | 1  |    |       |   |
| Task 4.2  | Antenna prototyping                                       |    |   |        |            |    |        |    |    |        |    |    |       |   |
| Task 4.3  | Hardware-assisted algorithm acceleration                  |    |   |        |            |    |        |    |    |        |    |    |       |   |
| Task 4.4  | Coupling liquid building                                  |    |   |        |            |    |        |    |    |        |    |    |       |   |
| WP 5      | MWI system experimental testing                           |    |   |        |            |    |        |    |    |        |    |    |       |   |
| Task 5.1  | Whole system integration and testing                      |    |   |        |            |    |        |    |    |        |    |    |       | ] |
| Task 5.2  | Experimental validation on anthropomorphic phantom        |    | _ |        |            |    |        |    |    |        |    |    |       |   |
| WP 6      | Dissemination                                             |    |   |        |            |    |        |    |    |        |    |    |       |   |

### Deliverables

| No.  | Title                                                    | WP/task  | Delivery |            |
|------|----------------------------------------------------------|----------|----------|------------|
| D1.1 | State of the art report                                  | Task 1.1 | Y1-Q1    | 05/05/2017 |
| D1.2 | System requirements report                               | Task 1.2 | Y1-Q1    | 05/05/2017 |
| D2.1 | EM 3D full-wave modeling tool                            | Task 2.1 | Y1-Q2    | 05/08/2017 |
| D3.1 | Segmented head test cases                                | Task 3.1 | Y1-Q3    |            |
| D2.3 | Report on the designed antenna system                    | Task 2.3 | Y1-Q4    |            |
| D3.2 | Numerical 3D head phantoms                               | Task 3.2 | Y1-Q4    |            |
| D0.1 | Annual project management, activity and financial report | WPO      | Y1-Q4    |            |
| D4.1 | RF front-end back-end prototype                          | Task 4.1 | Y2-Q1    |            |
| D2.2 | MWI code for post-acute monitoring                       | Task 2.2 | Y2-Q2    |            |
| D4.2 | Antenna system prototype                                 | Task 4.2 | Y2-Q2    |            |
| D3.3 | Physical 3D head phantoms                                | Task 3.3 | Y2-Q4    |            |
| D2.4 | MWI code for quantitative tissue mapping                 | Task 2.4 | Y2-Q4    |            |
| D2.5 | Report on the performed system level simulations         | Task 2.5 | Y2-Q4    |            |
| D4.4 | Coupling liquid                                          | Task 4.4 | Y2-Q4    |            |
| D4.3 | FPGA code for MWI post-acute monitoring algorithms       | Task 4.3 | Y2-Q4    |            |
| D0.2 | Annual project management, activity and financial report | WP0      | Y2-Q4    |            |
| D5.1 | Report on the performed MWI system testing               | Task 5.1 | Y3-Q1    |            |
| D5.2 | Report on the performed MWI system validation            | Task 5.2 | Y3-Q4    |            |
| D0.3 | Final project management, activity and financial report  | WP0      | Y3-Q4    |            |

### Deliverables

| No.  | Title                                                    | WP/task  | Delivery |            |  |
|------|----------------------------------------------------------|----------|----------|------------|--|
| D1.1 | State of the art report                                  | Task 1.1 | Y1-Q1    | 05/05/2017 |  |
| D1.2 | System requirements report                               | Task 1.2 | Y1-Q1    | 05/05/2017 |  |
| D2.1 | EM 3D full-wave modeling tool                            | Task 2.1 | Y1-Q2    | 05/08/2017 |  |
| D3.1 | Segmented head test cases                                | Task 3.1 | Y1-Q3    | 05/11/2017 |  |
| D2.3 | Report on the designed antenna system                    | Task 2.3 | Y1-Q4    |            |  |
| D3.2 | Numerical 3D head phantoms                               | Task 3.2 | Y1-Q4    |            |  |
| D0.1 | Annual project management, activity and financial report | WP0      | Y1-Q4    |            |  |
| D4.1 | RF front-end back-end prototype                          | Task 4.1 | Y2-Q1    |            |  |
| D2.2 | MWI code for post-acute monitoring                       | Task 2.2 | Y2-Q2    |            |  |
| D4.2 | Antenna system prototype                                 | Task 4.2 | Y2-Q2    |            |  |
| D3.3 | Physical 3D head phantoms                                | Task 3.3 | Y2-Q4    |            |  |
| D2.4 | MWI code for quantitative tissue mapping                 | Task 2.4 | Y2-Q4    |            |  |
| D2.5 | Report on the performed system level simulations         | Task 2.5 | Y2-Q4    |            |  |
| D4.4 | Coupling liquid                                          | Task 4.4 | Y2-Q4    |            |  |
| D4.3 | FPGA code for MWI post-acute monitoring algorithms       | Task 4.3 | Y2-Q4    |            |  |
| D0.2 | Annual project management, activity and financial report | WP0      | Y2-Q4    |            |  |
| D5.1 | Report on the performed MWI system testing               | Task 5.1 | Y3-Q1    |            |  |
| D5.2 | Report on the performed MWI system validation            | Task 5.2 | Y3-Q4    |            |  |
| D0.3 | Final project management, activity and financial report  | WP0      | Y3-Q4    |            |  |

# **D1.1 State of the art report (POLITO)**

#### State of the art: experimental devices (1)

**Chalmers University, Sweden**, "Microwave-Based Stroke Diagnosis Making Global Prehospital Thrombolytic Treatment Possible", IEEE Trans. Biomedical Eng., 61, 2014: specifically designed for stroke classification, but it cannot provide images of the head



### State of the art: experimental devices (2)

**S. Semenov (EMTensor, Austria)** et al. "Electromagnetic tomography for brain imaging: Initial assessment for stroke detection", 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS); Semenov, S. Y. Electromagnetic tomography solutions for scanning head. US 20140155740 (2014).

160 antennas; need of improvements of both hardware and imaging algorithms



### State of the art: experimental devices (3)

**A. M. Abbosh et al.,** IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 63, NO. 1, JANUARY 2014, "Microwave System for Head Imaging"; "On-site Rapid Diagnosis of Intracranial Hematoma using Portable Multi-slice Microwave Imaging System" (2016), http://www.nature.com/articles/srep37620 broadband data, which entails significant problems in terms of EM modeling of tissue dispersivity; confocal algorithms that are known to be ineffective in heterogeneous environments



Platform

### State of the art: experimental devices (4)

Finite-element contrast source inversion method for microwave imaging **Joe LoVetri** et al., Inverse Problems 26 (2010) 115010 (21pp)



The VNA is connected to the antennas via an Agilent 24-port microwave switch

# **D1.2 System Requirements (CNR-IREA)**

#### System requirements (1)



### Working frequency <1.5GHz

### **Embedding medium [10-50]**

### 7-15mm spatial resolution



### System requirements (2)

- The system will exploit a narrow working frequency band centered on 1 GHz (e.g. 0.9-1.1 GHz), due to limitations in the wave penetration inside the head
- A coupling liquid with relative permittivity between 30-40 will be selected to improve both matching and achievable spatial resolution
- The system will use around 25 antennas, assuming that the hemi-spherical surface has a radius of 12cm. This number is determined, with respect to the adopted frequency and coupling medium.
- a system dynamic range of at least 90 dB.



System requirements (3)



Realize as first a 2-D scanner to experimentally test the 2-D imaging algorithms ? How many antennas ?



#### System requirements (3)



- Realize as first a 2-D scanner to experimentally test the 2-D imaging algorithms ? How many antennas ?
- Realize the coupling «liquid» in the 3-D scanner using a mixture of silicone rubber and carbon powder ? It can be realized easily a soft headset; it is not a liquid (it does not require a «plastic bag» to keep it on the head... )



Experimental results realized by Jorge Tobon in his STSM at Technische Universität Ilmenau, Ilmenau (DE).

Figure 4. Dielectric properties for different concentrations of Carbon Powder in



### System requirements (4)

- The antenna array will be connected to a switching matrix in order to drive each antenna in the receiving or transmitting mode.
- The switching matrix is constituted by 8 7-ports switches, 2 5-ports switches and 24 3-ports switches. The expected isolation, needed to minimize the crosstalk, is **+110dB**.



### System requirements (5)

Keysight Technologies N1810TL, L7104A, and L7106A coaxial switches (isolation >110dB at 1 GHz)



custom designed switch driver: Keysight L4490A/91A RF Switch Platform



Possible final custom switch matrix

### System requirements (6)

• an ad-hoc radiofrequency (RF) front-end system, which consists of a transmitter (TX), a receiver (RX), and the above mentioned switch matrix to connect TX and RX to the antennas.



### System requirements (7)

#### > M9370A PXIe Vector Network Analyzer, 300 kHz to 4 GHz



#### Final issues

- Mibrascan Logo contest bring your proposal! (as ppt)
- MiBraScan web site: <u>https://wordpress.org/themes/</u>

Mibrascan Logo contest





