MiBraScan - Microwave Brain Scanner for
Cerebrovascular Diseases Monitoring

KO CNR-IREA, 01/02/2017



MiBraScan main expected result

Develop and build the prototype of a microwave imaging (MW!I) device able to track the
evolution in time of a stroke, as well as to image the features of the tissues it has affected.

* non-invasive and safe, thanks to the use of low-power, non ionizing radiations;

* provides real-time images of the stroke evolution, thanks to tailored processing algorithms
and their hardware implementation;

* portable at the patient bed, thanks to the use of ad-hoc developed front-end electronics;

* is cost-efficient, thanks to low-cost of the involved technologies.



Brief introduction on recent results effort by POLITO (1)

The team:

v" Francesca Vipiana, Jorge Tobon and Gianluca Dassano, Antenna and EMC Lab (LACE,
http://areeweb.polito.it/lace/)

v" Mario Casu, Giovanna Turvani and Marco Vacca, VLSI Lab
(http://www.det.polito.it/it/the_department/internal_structures/research_labs/visi_la
boratory)



rief introduction on recent results effort by POLITO (2)

v" In-house 3-D EM full-wave solver to
model the whole microwave imaging
system together with a 3-D
anthropomorphic phantom
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Brief introduction on recent results effort by POLITO (3)

v’ Design, prototyping and testing of custom printed antennas
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Fig. 3. (a) Antenna and (b) S1; measured in 80-20% glycerin-water mixture
(solid line) and in Triton x-100 (dashed line).



Brief introduction on recent results effort by POLITO (4)

v' Design, prototyping and testing of ad-hoc radiofrequency (RF) front-end systems
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Fig. 1. Architecture of our prototype system for breast-cancer detection using Microwave Imaging.
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Fig. 7. Low-cost, small-size components off-the-shelf used in our system.



Brief introduction on recent results effort by POLITO (5)

v Custom programming of an embedded Field-Programmable Gate Array (FPGA)
for accelerating the execution of the imaging algorithm.
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Fig. 8. computing architecture on a Xilinx Zyng SoC.



Overview of recent CNR-IREA results

Expertise
EM modelling in complex environments

Approaches for imaging problems

Tools and methodologies to design optimal MWI systems



Overview of recent CNR-IREA results

A simple tool to fix working conditions
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Overview of recent CNR-IREA results

A methodology for optimal MWI system design
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Overview of recent CNR-IREA results

A methodology for optimal MWI system design
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Overview of recent CNR-IREA results

A methodology for optimal MWI system design
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Overview of recent CNR-IREA results
A methodology for optimal MWI system design

Reducing the number of probes (image of a point-like target)
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Overview of recent CNR-IREA results

the team

Lorenzo Crocco
Rosa Scapaticci
Gennaro G. Bellizzi

Associated researchers for MIBRASCAN
Enrico Tedeschi
Gennaro Bellizzi



Brief introduction/update on recent results effort by CNRS



Recalling the first steps of the projects (from the gantt chart)
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D1.1 State of the art report (POLITO)



State of the art: experimental devices (1)

Chalmers University, Sweden, “Microwave-Based Stroke Diagnosis Making Global
Prehospital Thrombolytic Treatment Possible”, IEEE Trans. Biomedical Eng., 61, 2014
specifically designed for stroke classification, but it cannot provide images of the head




State of the art: experimental devices (2)

S. Semenov (EMTensor, Austria) et al. “Electromagnetic tomography for brain imaging:
Initial assessment for stroke detection”, 2015 IEEE Biomedical Circuits and Systems

Conference (BioCAS); Semenoy, S. Y. Electromagnetic tomography solutions for scanning
head. US 20140155740 (2014).

160 antennas; need of improvements of both hardware and imaging algorithms
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State of the art: experimental devices (3)

A. M. Abbosh et al., IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,
VOL. 63, NO. 1, JANUARY 2014, “Microwave System for Head Imaging”; “On-site Rapid
Diagnosis of Intracranial Hematoma using Portable Multi-slice Microwave Imaging System”
(2016), http://www.nature.com/articles/srep37620

broadband data, which entails significant problems in terms of EM modeling of tissue
dispersivity; confocal algorithms that are known to be ineffective in heterogeneous
environments
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State of the art: experimental devices (4)

Finite-element contrast source inversion method for microwave imaging
Joe LoVetri et al., Inverse Problems 26 (2010) 115010 (21pp)
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The VNA is connected to the antennas via an
Agilent 24-port microwave switch



D1.2 System Requirements (CNR-IREA)



relative permittivity

System requirements (1)

Working frequency <1.5GHz

Embedding medium [10-50]

7-15mm spatial resolution
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System requirements (2)

The system will exploit a narrow working frequency band centered on 1 GHz (e.g. 0.9-1.1
GHz), due to limitations in the wave penetration inside the head

A coupling liquid with relative permittivity between 30-40 will be selected to improve
both matching and achievable spatial resolution

The system will use around 25 antennas, assuming that the hemi-spherical surface has a
radius of 12cm. This number is determined, with respect to the adopted frequency and
coupling medium.

a system dynamic range of at least 90 dB.




System requirements (3)

» Realize as first a 2-D scanner to experimentally test the 2-D
imaging algorithms ? How many antennas ?




System requirements (3)

» Realize as first a 2-D scanner to experimentally test the 2-D
imaging algorithms ? How many antennas ?

» Realize the coupling «liquid» in the 3-D scanner using a
mixture of silicone rubber and carbon powder ? It can be
realized easily a soft headset; it is not a liquid (it does not
require a «plastic bag» to keep it on the head...)
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System requirements (4)

The antenna array will be connected to a switching matrix in order to drive each antenna
in the receiving or transmitting mode.

The switching matrix is constituted by 8 7-ports switches, 2 5-ports switches and 24 3-
ports switches. The expected isolation, needed to minimize the crosstalk, is +110dB.

24 antennas
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System requirements (5)

» Keysight Technologies N1810TL, L7104A, and L7106A coaxial switches (isolation
>110dB at 1 GHz)
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» custom designed switch driver: Keysight L4490A/91A RF Switch Platform

Possible final custom switch matrix




System requirements (6)

e an ad-hoc radiofrequency (RF) front-end system, which consists of a transmitter (TX), a
receiver (RX), and the above mentioned switch matrix to connect TX and RX to the

antennas.
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System requirements (7)

» M9370A PXle Vector Network Analyzer, 300 kHz to 4 GHz
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Final issues

» Mibrascan Logo contest — bring your proposal! (as ppt)

> MiBraScan web site: https://wordpress.org/themes/



https://wordpress.org/themes/
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